University of Tokyo

End-node transmission rate control kind to intermediate routers - towards 10 Gbps era

Makoto Nakamura, Junsuke Senbon, Yutaka Sugawara, Tsuyoshi Itoh, Mary Inaba, Kei Hiraki

University of Tokyo

Outline of this talk

- Background of Data Reservoir Project
- Observations at BWC2002
- Transmission Rate Controlled TCP for DR
 - Software approach
 - IPG tuning
 - Clustered Packet Spacing
 - NIC hardware approach
 - TCP-aware NIC
- Results at BWC2003

Objectives of Data Reservoir

- Sharing scientific data between distant research institutes
 - Physics, astronomy, earth science, simulation data
- Very high-speed single file transfer on Long Fat pipe Network (LFN)
- High utilization of available bandwidth
- OS and filesystem transparency
 - Storage level data sharing
 - High speed iSCSI protocol on TCP

Features of Data Reservoir

- Data sharing in low-level protocol
 - Use of iSCSI protocol
 - Efficient disk to disk data transfer
- Multi-level striping for performance scalability
- Local file accesses through LAN
- Global disk transfer through WAN
 - Unified by iSCSI protocol

File accesses on Data Reservoir

Global disk transfer on Data Reservoir

Observations at BWC2002

Results of SC2002 BWC

- 550 Mbps, 91% utilization
 - Bottleneck: OC-12, RTT: 200 ms
- Parallel "normal" TCP streams
- 24 nodes x 2 streams
- "Most Efficient Use of Available Bandwidth" award

Observations of SC2002 BWC

But...

Poor performance per stream

- Packet loss hits a stream too early during slow start
- TCP congestion control recovers window too slowly

Unbalance among parallel streams

- Packet loss occurs asynchronously & unfairly
- Slow streams can't catch up fast streams

Transmission rate affects performance

- Transmission rate is important
 - Fast Ethernet > GbE
 - Fast Ethernet is "ultra" stable
 - GbE is "too" unstable and poor on average
 - lperf
 - 30 seconds

Slow start makes burst

- Slow start
 - Double window of data every RTT
 - Send whole window burstly at the beginning of every RTT
 - Packet loss occurs even though huge idle period
 - Packets sent in 20 ms, nothing happen in 180 ms

Packet loss occurred

What's problems to solve?

- TCP/GbE on real LFN is quite unstable
 - Bursty transmission of packets
- Next Generation TCP
 - Aggressive but gentle window control algorithm
 - HighSpeed TCP, Scalable TCP, FAST TCP
 - Incorporated "rate control" feature
 - Reducing needless packet loss on underutilized network

Transmission Rate Controlled TCP

Transmission rate control for TCP

- Ideal Story
 - Transmitting a packet every RTT/cwnd
 - 24 us interval for 500Mbps
 - MTU 1500B
 - High load for software only

IPG tuning

- Inter Packet Gap (IPG) of Ethernet MAC layer
 - A time gap between packets
 - 8 ~ 1023B, 1B (8ns) step in case of Intel e1000
 - TCP stream
 - 941 Mbps ~ 567 Mbps
 - Fine grain, low jitter, low overhead

IPG tuning on GbE

- Bottleneck is 596 Mbps
 - RTT: 200 ms
- Improve in Max/Avg case using IPG 1023B
 - Transmission Rate <
 Bottleneck bandwidth
- Improve in Max case using IPG 512B
- No effect in Min case

Clustered Packet Spacing (1)

- Insert transmission interval
 - Only during initial slow start
 - Using kernel timer In TCP stack of Linux kernel
 - Resolution: 1ms (Linux 2.6), 10ms (Linux 2.4)
 - Threshold value to transit to normal TCP
 - Coarse grain, low overhead
 - Spacing window of under 500 packets
 - Split burst into small fractions

Clustered Packet Spacing (2)

- RTT/cwnd > threshold
 - Rate control rules transmission timing
- RTT/cwnd < threshold</p>
 - Normal TCP congestion control takes over

Slow start of CPS Linux 2.6

- Rate control while cwnd/RTT > 1ms
 - Blue shaded part
 - Split burst into 200 small bursts
 - Each small bursts is limited up to 80 packets

CPS TCP

- CPS can make cwnd bigger when initial slow start
- Current slow start is too aggressive
 - Causing packet losses difficult to recover using Fast Retransmit

TCP-aware NIC

- Recognizing TCP parameters per stream
 - cwnd
 - RTT
- Adjusting IPG for flow-level rate dynamically
 - IPG = RTT / cwnd PacketSize / BW
- Mixing multiple streams
 - Advantage against IPG tuning
- Real-time scheduling of packet transmission
 - Resolution of micro-, nanosecond order
 - Multi-interval deadlines
 - Hardware's matter to deal with

Functional diagram TCP-aware NIC

Simulation evaluation

- Parameter
 - One-way Latency (ms)
 - **2**, 10, 25, 50, 100, 150
 - IPG
 - 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
 - Dynamic IPG
- Packet Loss Rate
 - Wire Loss Rate: 0.001%
 - Increased when remaining buffer is small
 - Increased when transmission is bursty
- Single stream

Network configuration

Dynamic/static optimization of IPG (1)

Throughput

Dynamic/static optimization of IPG (1)

Normalized standard deviation

Dynamic IPG optimization

- Gains higher throughput
 - When long latency (> 25 ms)
 - than "Default" and "Statically Optimized"
 - When small latency
 - than "Default"
- Gains lower throughput
 - When small latency
 - than "Statically Optimized"
 - Degraded 3% on 2 ms latency, 21% on 10 ms latency
- Can Stabilize throughput
 - Smaller normalized standard deviation
 - than "Default" and "Statically Optimized"

Results at BWC2003

Network configuration (During SC2003)

SC2003 BWC

Results of SC2003 BWC

- SC2003 BWC
 - Bottleneck: 2 x OC-48, OC48 (3 x GbE), GbE
 - RTT: 335 ms, 326 ms, 292 ms
- Parallel IPG-tuned TCP streams
 - 16 nodes x 4 streams
 - Maximum throughput: 5.42 Gbps
- "Distance x Bandwidth Product and Network Technology" award

Our contribution

- Highlight importance of rate control for TCP
 - Alleviating bursty behavior on GbE
 - Reducing needless packet loss on underutilized network
- Demonstrate real data transfer on real LFN
 - Disk-to-Disk file transfer
 - Utilization of low-level data sharing
 - Using iSCSI protocol
 - Transmission rate control in TCP stack
 - Parallel streams

Conclusion

- Transmission Rate Controlled TCP
 - Stabilize and improve performance
- IPG tuning
 - Static, low overhead, easy to use
- Clustered Packet Spacing
 - Flexible, feasible with little overhead
- TCP-aware NIC
 - Dynamic, low overhead
 - Adaptable to heterogeneous streams simultaneously

BWC 2003 Experiment is supported by

NTT / VERIO

